# [8+2] Cycloaddition of 8-oxoheptafulvene with cycloheptatrieneFe(CO) 3 : synthesis of tricarbonyl[(2,3,4,5- $\eta$ )-11-acetoxy-1 $H$-cyclohept $[a]$ azulene $]$ iron 

Noboru Morita *, Ryuji Yokoyama, Toyonobu Asao, Mituhiro Kurita, Shigeru Kikuchi, Shunji Ito *

Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578 Japan
Received 4 June 2001; received in revised form 22 August 2001; accepted 10 September 2001


#### Abstract

8-Oxoheptafulvene reacted with cycloheptatrieneFe( CO$)_{3}$ by $[8+2]$ cycloaddition to give tricyclo[8.5.0.0 $\left.0^{3,9}\right]$ pentadeca-$3,5,7,11,13$-pentaene-2-oneFe $(\mathrm{CO})_{3}(3)$, which easily reacted with another 8 -oxoheptafulvene under the reaction conditions to give four products. One of them was a $[2+4]$ cycloadduct (5) having an uncommon norcaradiene structure. Two products were $[8+2]$ cycloadducts ( 6 and 7) having a $\gamma$-lactone structure. The remaining product was an acylated compound (4). On raising the reaction temperature, the yields of the acylated compound increased. The [1:1] cycloadduct 3 reacted also with acetyl chloride in the presence of triethylamine to give an acetate (12), which was oxidized with $o$-chloranil to give 11-acetoxy- $1 H$-cyclohept $[a]$ azulene $\mathrm{Fe}(\mathrm{CO})_{3}(15)$. © 2002 Elsevier Science B.V. All rights reserved.


Keywords: 8-Oxoheptafulvene; CycloheptatrieneFe $(\mathrm{CO})_{3} ; ~[8+2] \quad$ Cycloaddition; Norcaradiene; $\quad 1 H$-Cyclohept $[a]$ azuleneFe $(\mathrm{CO})_{3}$; Tricyclo[8.5.0.0 ${ }^{3,9}$ ]pentadeca-3,5,7,11,13-pentaene-2-one

## 1. Introduction

8-Oxoheptafulvene (1) has the structures of both ketene and heptafulvene. This compound exhibited reactivitiy toward olefins like ketene to give mainly [2+2] cycloadducts [1]. For example, the reaction of 1 with


Scheme 1.

[^0]cyclopentene gives a 6-bicyclo[3.2.0]heptanone derivative, which contains a spiro cycloheptatriene skeleton. Thermal rearrangement of this adduct afforded 7-phenylbicyclo[3.2.0]heptan-6-one derivatives with a mixture of stereo isomers at C-7. Compound 1 also reacted with cyclopentadiene to give a cyclobutanone derivative [2]. However, this product isomerized on heating to give a formal $[8+2]$ cycloadduct. The reaction of 1 with cyclohexa-1,3-diene also exhibited similar results [2]. In contrast to the above results, compound $\mathbf{1}$ did not react with cycloheptatriene (Scheme 1).

Falshow et al. reported that diphenylketene reacted with cycloheptatriene to give a $[2+4]$ cycloadduct in $11 \%$ yield [3]. On the other hand, Goldschmidt reported that diphenylketene reacted with tricarbonyl(cycloheptatriene)iron (2) by a different mode to give a [2+2] cycloadduct in $25 \%$ yield, which easily isomerized to a [3+2] cycloadduct [4] (Scheme 2).
There are numerous inherent advantages in using olefins complexed to metal in organic synthesis. With respect to these advantages, we must emphasize the following points. Coordination of olefins to metal


Scheme 2.
sometimes activates cycloadditions and increases regioand stereoselectivities of the reaction. Reagents attack mainly from the opposite face of the metal coordination side. These cycloadducts frequently undergo thermal isomerization to give interesting systems [5,6].

We have already reported the reaction of $\mathbf{1}$ with tropone $\mathrm{Fe}(\mathrm{CO})_{3}$, tropone $\mathrm{Cr}(\mathrm{CO})_{3}$, and related compounds to give the corresponding heptafulvalene complexes [7]. In continuing our studies on the reaction of 1 with cyclic olefins $[1,2,7,8]$, we investigated the reaction of $\mathbf{1}$ with $\mathbf{2}$ and explored the utility of the reaction products. We present here, the $[8+2]$ cycloaddition of 1 with 2 and further reactions. We also present the preparation of iron tricarbonyl complexes of a compound fused together with cycloheptatriene and azulene derivatives.

## 2. Results and discussion

### 2.1. Reaction of 8 -oxoheptafulvene (1) with tricarbonyl(cycloheptatriene)iron (2)

8-Oxoheptafulvene (1) reacted with the excess of tricarbonyl(cycloheptatriene)iron (2) at room temperature for 6 h to give five products (Scheme 3). The products ( $\mathbf{3}-\mathbf{5}$ ) were separated by column chromatography on silica gel. Although a mixture of products $\mathbf{6}$ and 7 could not be separated by column chromatography, we found that $\mathbf{6}$ and 7 were separable by gel permeation chromatography (GPC). As shown in Table 1, the yields of $3-7$ depended on the solvents, reaction time
and temperature. Cycloadduct $\mathbf{3}$ was the main product at room temperature. Raising the reaction temperature increased yield of $\mathbf{4}$ but decreased that of $\mathbf{3}$. Compound 4 became the main product at reflux in benzene.

On the basis of mass spectra, product 3 ( $\left[\mathrm{M}^{+}\right], 350$ ) was the only one $1: 1$ adduct of $\mathbf{1}$ and $\mathbf{2}$, and the other products $\mathbf{4 - 7}\left(\left[\mathrm{M}^{+}\right], 468\right)$ were $2: 1$ adducts of $\mathbf{1}$ and $\mathbf{2}$. These structures were established on the basis of their IR and NMR spectral data as follows.

### 2.2. Structure of a [1:1] cycloadduct (3) <br> (3)

The cycloadduct 3 showed a carbonyl absorption at $1716 \mathrm{~cm}^{-1}$ in the IR spectrum, which suggested the presence of a conjugated carbonyl group of a five-membered ring. Compound $\mathbf{3}$ had nine olefinic protons, two methylene protons and three methine protons. Product 3 might be interpreted in terms of a [8+2] cycloaddition of $\mathbf{1}$ with $\mathbf{2}$. The methylene carbon in the cycloadduct 3 appeared at 24.95 ppm , which is the highest field. The corresponding methylene protons appeared at 2.08 and 2.51 ppm , which were confirmed by C, H COSY. From these clues, the other ring protons and carbons of $\mathbf{3}$ were assigned by $\mathrm{H}, \mathrm{H}$ COSY and by C, H COSY as shown in Section 4. Moreover, the configuration of the protons at the $1,9,10$-positions in $\mathbf{3}$ was deduced to be cis on the basis of NOE experiments. Irradiation of $\mathrm{H}-9$ gave NOE enhancements in the signals for $\mathrm{H}-1, \mathrm{H}-8$ and $\mathrm{H}-10$. Irradiation of $\mathrm{H}-10$ gave NOE enhancements in the signals for $\mathrm{H}-1, \mathrm{H}-9$ and $\mathrm{H}-11$. It is well known that cycloheptatrieneFe( CO$)_{3}$ undergoes cycloaddition of olefins from the opposite face of coordinated iron [4-6]. Consequently, we considered that there was an iron in the same side toward these methine protons in the cycloadduct $\mathbf{3}$ as depicted in Scheme 3.

### 2.3. Structure of $\mathbf{4}$

A carbonyl absorption in the IR spectrum of 4 appeared at $1764 \mathrm{~cm}^{-1}$. The corresponding carbonyl carbon in ${ }^{13} \mathrm{C}$-NMR appeared at 169.78 ppm . These observations suggested that compound 4 was an ester. A signal at 27.93 ppm in the ${ }^{13} \mathrm{C}$-NMR spectrum of the

Table 1
Correlation of reaction conditions of 1 with 2 and yield

| Entry | Conditions |  |  | Yield (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Solvent | Time (h) | Temperature | 3 | 4 | 5 | 6 and 7 |
| 1 | Ether | 3 | Reflux | 8 | Trace | 4 | 5 |
| 2 | Benzene | 6 | r.t. | 19.1 | 1.6 | 2.5 | 3.6 |
| 3 | Benzene | 12 | r.t. | 15 | 3 | 2 | 4 |
| 4 | Benzene | 11 | $60{ }^{\circ} \mathrm{C}$ | 10 | 8 | Trace | 4 |
| 5 | Benzene | 6 | Reflux | Trace | 14 | Trace | Trace |




5
6

3
4

Scheme 3.
cycloadduct $\mathbf{4}$ was assigned as a methylene carbon by DEPT analysis. Proton signals at 2.81 and 2.62 ppm in ${ }^{1} \mathrm{H}$-NMR were assigned as methylene protons by $\mathrm{C}, \mathrm{H}$ COSY. From this clue, other ring protons and carbons of the enolate form of $\mathbf{3}$ were assigned by H, H COSY and $\mathrm{C}, \mathrm{H}$ COSY. If the cycloadduct 4 was a [2:1] cycloadduct of $\mathbf{1}$ with $\mathbf{2}, 22$ carbons might be observed besides the carbonyl carbons. But 19 carbon signals appeared in ${ }^{13} \mathrm{C}$-NMR of 4 . Three carbon signals were missing. It was suggested that this molecule had a partially symmetric structure. The rest of the enolate ring protons of 4 appeared at $6.68,6.31,5.46$, and 2.77 ppm (ratio of area, 2:2:2:1, respectively). The corresponding carbons were observed at 130.97, 126.06, 115.77, and 43.43 ppm on the basis of C, H COSY. These signals were assigned as typical monosubstituted cycloheptatrienyl ring protons and carbons. Therefore, the cycloadduct $\mathbf{4}$ is an ester of tropylcarboxylic acid as shown in Scheme 3. As the temperature was raised in the reaction of $\mathbf{1}$ with $\mathbf{2}$, the yield of $\mathbf{4}$ increased. This observation meant that the enol form of $\mathbf{3}$ increased at higher temperature and reacted with another 8 -oxoheptafulvene to give the acylated product 4.

### 2.4. Structure of $\mathbf{5}$

Since two characteristic carbonyl absorption bands in IR of compound 5 were observed at 1768 and 1742 $\mathrm{cm}^{-1}$, compound 5 was estimated to be an ester or a lactone. The carbon signal at 25.98 ppm in ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 5 was assigned as a methylene carbon (C-12) by DEPT. The proton signals at 2.14 and 2.10 ppm in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5}$ were assigned as methylene protons at $\mathrm{C}-12$ on the basis of C, H COSY. From these methylene protons, protons at H-3a, 4-11, 7a, 7b, and 12a were assigned on the basis of decoupling and $\mathrm{H}, \mathrm{H}$ COSY experiments. The remaining proton signals were independent of the other protons mentioned above and
related to each other as a 3.05-6.05-6.41-6.14-6.25-$3.08-3.05$ on the basis of the $\mathrm{H}, \mathrm{H}$ COSY and $\mathrm{C}, \mathrm{H}$ COSY. These signals at $3.05,6.05,6.41,6.14,6.25$, and 3.08 were assigned to the protons of the norcaradiene moiety (H-1', H-2', H-3', H-4', H-5', and H-6', respectively). The three-membered ring carbons could not be found at 295 K , which is the usual temperature to take NMR spectra. When we recorded its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ at 309 K , their signals appeared at 23.62 and 52.17 , and 59.33 ppm as broad signals probably due to the contribution of cycloheptatriene form. In order to establish the configuration of the norcaradiene moiety, NOE experiments were carried out. Irradiation of H-3a gave NOE enhancements in the signals for $\mathrm{H}-4, \mathrm{H}-7 \mathrm{a}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}$, $\mathrm{H}-4^{\prime}$, and $\mathrm{H}-5^{\prime}$. Irradiation of $\mathrm{H}-1^{\prime}$ gave NOE enhancements in the signals for $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$. This observation suggested that this molecule had an endo-norcaradiene structure. Irradiation of $\mathrm{H}-7 \mathrm{~b}$ gave NOE enhancements in the signals for $\mathrm{H}-7 \mathrm{a}, \mathrm{H}-8$, and $\mathrm{H}-12 \mathrm{a}$. From these data, we established that this adduct was an endo-type norcaradiene derivative bearing spiro- $\delta$-lactone as shown in Scheme 3. Although, there are numerous reports regarding the relation between the cycloheptatriene and norcaradiene forms [9] and especially, endotype norcaradiene derivatives bearing a spiro- $\gamma$-lactone were known [2], this is the first example of a norcaradiene compound bearing a spiro- $\delta$-lactone. This cycloadduct $\mathbf{5}$ came from cycloaddition of $\mathbf{1}$ with $\mathbf{3}$ by [ $2+4]$ mode. To the best of our knowledge, this [2+4] cycloaddition was the first example in the reaction of 8 -oxoheptafulvene with enone. Furthermore, the cycloadduct 5 rearranged by thermal hydrogen 1,5 -shift to 9 quantitatively (Scheme 4).

### 2.5. Structures of $\mathbf{6}$ and $\mathbf{7}$

The carbonyl absorption bands in the IR spectra of adducts 6 and 7 can be seen at 1756 and $1758 \mathrm{~cm}^{-1}$,


9

Scheme 4.


Scheme 5.
respectively, suggesting lactone structures. The signals in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{6}$ were divided into two groups. The proton group from $\mathrm{H}-1$ to $\mathrm{H}-15$ was assigned by a similar NMR technique described above as shown in Section 4. The other one was $7.18\left(\mathrm{H}-3^{\prime}\right)-6.74\left(\mathrm{H}-4^{\prime}\right)-$ $6.82\left(\mathrm{H}-5^{\prime}\right)-6.20\left(\mathrm{H}-6^{\prime}\right)-5.37\left(\mathrm{H}-7^{\prime}\right)-2.82\left(\mathrm{H}-7^{\prime} \mathrm{a}\right)$. These signals were assigned on the basis of $\mathrm{H}, \mathrm{H} \mathrm{COSY}$ as shown. There was still a possibility of four structures due to the difference in stereochemistry at C-2 (8') and C-7'a on the basis of H, H COSY and C, H COSY of cycloadduct 6. Irradiation of $\mathrm{H}-1$ gave NOE enhancements in the signals for H-7'a and H-10, and H-15. Irradiation of $\mathrm{H}-10$ and 11 gave NOE enhancements in the signals for $\mathrm{H}-1, \mathrm{H}-9, \mathrm{H}-7$ 'a, and $\mathrm{H}-12$. Irradiation of H-4 gave NOE enhancements in the signals for $\mathrm{H}-5$ and $\mathrm{H}-\mathrm{7}^{\prime}$. Consequently, there were protons $\mathrm{H}-1, \mathrm{H}-9$, H-10 and H-7'a in the same side. According to these results, the structure of $\mathbf{6}$ was established as shown in Scheme 3. Similarly, the structure of 7 was established as a stereo isomer of 6 at $\mathrm{H}-7 \mathrm{a}$ as shown in Scheme 3.

### 2.6. Reaction profile of $\mathbf{1}$ with $\mathbf{2}$

It is interesting that the $[2+2] \pi$ cycloadduct $\mathbf{8}$ or its derivative could not be obtained by the reaction of $\mathbf{1}$ with 2. Complex 2 was well known to receive electrophilic attack at the free double bond from the opposite face of iron to give an irontricarbonyl complex of substituted cycloheptadienium [6,10]. Consequently, on inspection of the reaction products and previous results, we considered that, first of all, cycloheptatriene $\mathrm{Fe}(\mathrm{CO})_{3}$ attacked $\mathbf{1}$ as a nucleophile to give a zwitterion 10, followed by ring closure to give the $[8+2]$ cycloadduct 3. Accordingly, 1 played the role of an $8 \pi$ electronic ingredient in this cycloaddition. There was a probability that $[2: 1]$ adducts $(\mathbf{4}, \mathbf{5}, \mathbf{6}$, and $\mathbf{7})$ came from the reaction of $\mathbf{1}$ with $\mathbf{3}$ or $\mathbf{8}$. Therefore, the reaction of $\mathbf{1}$ with 3 was carried out at room temperature for 5 h to give $[2: 1]$ adducts $\mathbf{4}, 5, \mathbf{6}$, and 7 in $4,15,4$, and $4 \%$ yields, respectively. These experiments suggested $\mathbf{1}$ initially reacted with $\mathbf{2}$ in $[8+2]$ mode. Compound $\mathbf{1}$ further reacted with $\mathbf{3}$ to give several types of products (acylation, $[2+4]$, and $[8+2]$ cycloaddition). The reaction profile of $\mathbf{1}$ with 2 is shown in Scheme 5 on the basis of their structures. It is interesting that [ $8+2$ ] adduct 3 exhibited several reactivities toward 8 oxoheptafulvene.

### 2.7. Further reactivities of the $[8+2]$ cycloadduct $\mathbf{3}$

The reactivity of the $[8+2]$ cycloadduct $\mathbf{3}$ was further exemplified by a rearrangement of the methine proton at C-9 in chloroform to give complex 11. This rearrangement was very slow in benzene. Chloroform sometimes contains a trace amount of acid. We suspected that this was an acid-catalyzed isomerization. Complex 3 reacted with acetyl chloride in the presence of triethylamine in benzene to give an acetate $\mathbf{1 2}$ similar to cycloadduct 4. Cycloadduct $\mathbf{3}$ was easily reduced with sodium boron hydride stereospecifically to give alcohol $\mathbf{1 3}$ in $92 \%$ yield. The cycloadduct $\mathbf{3}$ was decomplexed by ceric ammonium nitrate at room temperature to give $\mathbf{1 4}$ ( $75 \%$ ). Under an analogous acylation condi-


Scheme 6.


Scheme 7.


Scheme 8.


Scheme 9.


Scheme 10.
tion of $\mathbf{3}$, we failed to obtain the corresponding acetates from the rearranged product 11 and iron-free compound 14 (Scheme 6).

### 2.8. Synthesis of tricarbonyl[(2,3,4,5- $)$ )-1H-cyclohept[a]azulenejiron and related compounds

There has been no report of a mononuclear azulenoid complex of iron tricarbonyl (Scheme 7). Dinuclear complexes in azulenoid organometallic complex are well known [11]. Due to development of a synthetic way for azulenoid complexes of iron tricarbonyl from 3, we examined the oxidation condition of the acetate
12. Compound $\mathbf{1 2}$ was treated with $o$-chloranil in benzene at room temperature to give tricarbonyll( $2,3,4,5$ $\eta$ )-11-acetoxy-1 H -cyclohept[ $a$ ]azulene]iron (15) in $78 \%$ yield. Oxidation of compound $\mathbf{1 2}$ with DDQ afforded compound 15 and iron-free compound 16. Compound 15 was treated with trimethylamine $N$-oxide due to decomplexation to give further oxidized benzoazulene derivative $\mathbf{1 7}$ in $48 \%$ yield (Scheme 8). Complex $\mathbf{4}$ also oxidized with $o$-chloranil to give azulene 18 in $57 \%$ yield (Scheme 9).

Although the synthesis of $1 H$-cyclohept $[a]$ azulene has been reported already [12], its irontricarbonyl complex is unknown. Complexes $\mathbf{1 5}$ and $\mathbf{1 8}$ were the first examples of mononuclear irontricarbonyl complexes in azulenoid compounds. By comparing the NMR and vis spectra of $\mathbf{1 5}$ and $\mathbf{1 6}$, we observed characteristic changes by coordination to iron tricarbonyl. The chemical shift of the azulene ring protons changed to upper field ( $\Delta 0.13-0.22 \mathrm{ppm}$ ) and the absorption maximum of the longest wavelength shifted to longer wavelength ( $\Delta 22 \mathrm{~nm}$ ) in the Vis spectra by coordination to irontricarbonyl.

We considered that the yield of [ $8+2$ ] cycloadduct 3 was poor because electron density was not high. One of the three carbonyl ligands of complex $\mathbf{2}$ was exchanged with triphenylphosphine or triphenyl phosphite, which was expected to have a more electron-donating character to give 19a [13] and 19b [14], respectively. The compound 1 reacted with 19 a and $19 b$ to give [ $8+2$ ] cycloadducts 20a and 20b in 37 and $34 \%$ yield, respectively (Scheme 10). We could not find a [2:1] cycloadduct due to the strong steric effect. According to these results, it is assumed that the cycloaddition of 8 -oxoheptafulvene with cycloheptatriene iron complexes occurred in $[8+2]$ fashion. $[8+2]$ Cycloadducts were considered as potentially useful intermediates for preparing interesting condensed azulene derivatives. Improvement of this approach and its application to mononuclear iron complexes of azulenoid compounds are currently under way in our laboratory.

## 3. Conclusion

We have demonstrated that reaction of 8 -oxoheptafulvene with cycloheptatrieneFe( CO$)_{3}$ underwent $[8+2]$ cycloaddition to give 3, which reacted with another 8 -oxoheptafulvene by several types of reaction. Furthermore, we developed a synthetic way of tricarbonyliron complexes of $1 H$-cyclohept [ $a$ ]azulene and related compounds from cycloadduct 3. In the case of cycloheptatriene $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{PR}_{3}$, the yields of $[8+2]$ cycloadduct increased.

## 4. Experimental

### 4.1. General

Melting points (m.p.) were determined on a Yanagimoto micro melting point apparatus MP-S3 and are uncorrected. IR and UV spectra were measured on a Shimadzu FTIR-8100M and a Hitachi U-3410 spectrophotometer, respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra $\left({ }^{13} \mathrm{C}\right.$ NMR spectra) were recorded on a Bruker AM-600 spectrometer at $600 \mathrm{MHz}(150 \mathrm{MHz}$ ), a JEOL A500 at $500 \mathrm{MHz}(125 \mathrm{MHz})$ and a JEOL GSX-400 at 400 $\mathrm{MHz}(100 \mathrm{MHz})$ in $\mathrm{CDCl}_{3}$. Mass spectra were obtained with a JEOL HX-110 or a Hitachi M-2500 instrument usually at 70 eV . Column chromatography was performed on silica gel (Kieselgel 60). Gel permeation chromatography (GPC) was performed on a TSKgel $\mathrm{G} 2000 \mathrm{H}_{6}$. Elemental analyses were performed at the Instrumental Analysis Center of Chemistry, Faculty of Science, Tohoku University.

### 4.2. Reaction of 8 -oxoheptafulvene (1) with tricarbonyl[(1,2,3,4- $)$-1,3,5-cycloheptatriene]iron (2)

A solution of tropyl carboxylic acid chloride ( 2.34 g , $15.1 \mathrm{mmol})$ in dry benzene ( 100 ml ) was added dropwise at room temperature (r.t.) to a solution of 2 (4.64 $\mathrm{g}, 20.0 \mathrm{mmol})$ and triethylamine $(2.40 \mathrm{~g}, 23.7 \mathrm{mmol})$ in the same solvent ( 150 ml ) over a period of 6 h under nitrogen atmosphere. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel with benzene to afford $3(1.00 \mathrm{~g}, 18.9 \%), 4(111 \mathrm{mg}, 1.6 \%), 5(178 \mathrm{mg}$, $2.5 \%), 1: 1$ mixture of 6 and $7(261 \mathrm{mg}, 3.7 \%)$. The mixture of $\mathbf{6}$ and 7 was separated by GPC with $\mathrm{CHCl}_{3}$ as an eluent to afford lactone $\mathbf{6}(130 \mathrm{mg}, 1.8 \%)$ and lactone 7 ( $130 \mathrm{mg}, 1.8 \%$ ).

### 4.2.1. Tricarbonyl[(11,12,13,14-ף)-tricyclo[8.5.0.0.0,9]-

 pentadeca-3,5,7,11,13-pentaene-2-onejiron (3)Yellow crystals; m.p. $134-136{ }^{\circ} \mathrm{C}$; IR ( KBr ) $v_{\text {max }}$ 2048, 1982, 1958 and $1716 \mathrm{~cm}^{-1}$; UV-vis (MeOH) $\lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 202$ (4.51), 203 (4.53), 215 (4.50), 225 (4.52), 266 sh (3.77) and 341 sh (3.51); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{dd}, J=6.6,2.0 \mathrm{~Hz}, \mathrm{H}-4), 6.21$ (dd, $J=11.3,6.8 \mathrm{~Hz}, \mathrm{H}-6), 6.10$ (dd, $J=11.3,6.7 \mathrm{~Hz}$, H-5), 5.94 (ddd, $J=11.1,6.8,2.6 \mathrm{~Hz}, \mathrm{H}-7$ ), 5.42 (dd, $J=11.1,2.4 \mathrm{~Hz}, \mathrm{H}-8), 5.32$ (dd, $J=6.8,5.0 \mathrm{~Hz}, \mathrm{H}-12$ ), 5.26 (dd, $J=6.8,5.0 \mathrm{~Hz}, \mathrm{H}-13$ ), 3.98 (dddd, $J=6.1$, 2.6, 2.4, 2.0 Hz, H-9), 3.00 (td, $J=6.1,2.2 \mathrm{~Hz}, \mathrm{H}-10$ ), 2.93 (ddd, $J=6.8,5.2,2.2 \mathrm{~Hz}, \mathrm{H}-14$ ), 2.78 (d, $J=6.8$ Hz, H-11), 2.51 (dd, $J=15.4,5.9 \mathrm{~Hz}, \mathrm{H}-15$ ), 2.12 (ddd, $J=15.4,5.7,2.3 \mathrm{~Hz}, \mathrm{H}-15)$ and $2.08(\mathrm{dd}, J=5.7,2.2$ $\mathrm{Hz}, \mathrm{H}-1) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.86$ $\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 203.95(\mathrm{C}-2), 135.41(\mathrm{C}-6), 134.02(\mathrm{C}-3)$, 129.75 (C-4), 129.65 (C-5), 127.93 (C-7), 91.04 (C-13),
88.33 (C-12), 58.36 (C-11), 55.91 (C-14), 49.67 (C-1), 46.81 (C-9), 41.29 (C-10) and 24.95 (C-15); HRMS (EI) calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Fe}\left[\mathrm{M}^{+}\right]$350.0242, Found: 350.0230; MS (70 eV) m/z $350\left(\left[\mathrm{M}^{+}\right], 7\right), 322(68), 266$ (100) and 238 (44); Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FeO}_{4}: \mathrm{C}, 61.74 ; \mathrm{H}, 4.03$. Found: C, 61.98; H, 4.14\%.

### 4.2.2. Tricarbonyl[(11,12,13,14-ף)-tricyclo[8.5.0.0 $\left.0^{3,9}\right]$ -

 pentadeca-1,3,5,7,11,13-hexaen-2-ylliron cyclohepta-1', $3^{\prime}, 5^{\prime}$-triene- $7^{\prime}$-carboxylate (4)Colorless crystals; m.p. 126.7-128.7 ${ }^{\circ} \mathrm{C}$ (dec.); IR $(\mathrm{KBr}) v_{\text {max }} 3032,2880,2836,2048,1976$ and 1764 $\mathrm{cm}^{-1} ;$ UV-vis $(\mathrm{MeOH}) \lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 233$ (4.66) and 320 (3.90); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta 6.68$ (t, $J=2.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and H-4'), $6.51(\mathrm{dd}, J=11.0,5.9 \mathrm{~Hz}$, H-9), 6.38 (dd, $J=11.0,5.8 \mathrm{~Hz}, \mathrm{H}-6$ ), 6.31 (dd, $J=8.8$, $2.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-5^{\prime}$ ), 6.14 (ddd, $J=9.7,5.8,1.0 \mathrm{~Hz}$, H-7), 5.76 (d, $J=5.9 \mathrm{~Hz}, \mathrm{H}-4$ ), 5.56 (dd, $J=9.7$, 4.5 $\mathrm{Hz}, \mathrm{H}-8$ ), 5.50 (dd, $J=7.2,4.5 \mathrm{~Hz}, \mathrm{H}-12$ ), 5.46 (dd, $J=8.8,5.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-6^{\prime}$ ), 5.27 (dd, $J=6.7$, 5.2 $\mathrm{Hz}, \mathrm{H}-13$ ), 3.81 (dd, $J=8.5,1.0 \mathrm{~Hz}, \mathrm{H}-10$ ), 3.11 (dd, $J=7.2,1.0 \mathrm{~Hz}, \mathrm{H}-12), 3.01(\mathrm{dd}, J=6.7,5.5 \mathrm{~Hz}, \mathrm{H}-14)$, 2.82 (dd, $J=8.5,4.5 \mathrm{~Hz}, \mathrm{H}-9$ ), 2.81 (dd, $J=18.0$, 5.5 $\mathrm{Hz}, \mathrm{H}-15$ ), 2.77 ( $\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{H}-7$ '), and 2.62 (d, $J=18.0 \mathrm{~Hz}, \mathrm{H}-15)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $210.82\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 169.78(\mathrm{OCO}), 142.61(\mathrm{C}-2), 135.82$ (C-3), 135.01 (C-1), 130.97 (C-3' and $\left.\mathrm{C}-4^{\prime}\right), 130.47$ (C-5), 128.96 (C-6), 126.06 (C-2' and $\mathrm{C}^{\prime} 5^{\prime}$ ), 125.47 (C-7), $118.70(\mathrm{C}-8), 115.77\left(\mathrm{C}-1^{\prime}\right.$ and $\left.\mathrm{C}^{-} 6^{\prime}\right), 110.58$ (C-4), 89.82 (C-13), 88.66 (C-12), 60.59 (C-11), 56.91 (C-14), 44.98 (C-10), 43.56 (C-9), 43.43 (C-7') and 27.93 (C-15); HRMS (EI) calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Fe}\left[\mathrm{M}^{+}\right]$ 468.0660, Found: 468.0640; MS (70 eV) $m / z 468\left(\left[\mathrm{M}^{+}\right]\right.$, $7 \%$ ), 412 (27), 384 (100) and 356 (22); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FeO}_{5}: \mathrm{C}, 66.69 ; \mathrm{H}, 4.30$. Found: C, $66.75 ; \mathrm{H}$, $4.40 \%$.
4.2.3. Tricarbonyl $[(8,9,10,11-\eta)-3,3 a, 7 a, 7 b, 12,12 a-$ hexahydro-2H-cyclohept[a]azuleno[c,d]pyren-2-one -3-spiro-7'-bicyclo[4.1.0]hepta-2',4'-diene]iron (5)

Colorless crystals; m.p. $147.0-150.0{ }^{\circ} \mathrm{C}$ (dec.); IR ( KBr ) $v_{\text {max }}$ 2048, 1974, 1950, 1768 and $1742 \mathrm{~cm}^{-1}$; $\mathrm{UV}-\mathrm{vis}(\mathrm{MeOH}) \lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 227$ sh (4.59), 257 sh (4.28) and 281 sh (4.12); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta$ 6.41 (dd, $\left.J=8.8,6.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.25$ (dd, $J=8.9,6.8$ $\mathrm{Hz}, \mathrm{H}-5^{\prime}$ ), 6.14 (dd, $J=8.9,6.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$ ), 6.05 (dd, $\left.J=8.8,6.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.85$ (ddd, $J=11.8,6.6,1.5 \mathrm{~Hz}$, H-6), 5.75 (dd, $J=11.8,4.7 \mathrm{~Hz}, \mathrm{H}-7$ ), 5.63 (ddd, $J=$ $11.1,6.6,2.9 \mathrm{~Hz}, \mathrm{H}-5), 5.56$ (dd, $J=11.1,2.8 \mathrm{~Hz}, \mathrm{H}-4$ ), 5.25 (ddd, $J=7.8,4.9,1.3 \mathrm{~Hz}, \mathrm{H}-9$ ), 5.20 (dd, $J=7.7$, $4.9 \mathrm{~Hz}, \mathrm{H}-10$ ), $3.80\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.46$ ( m , $\mathrm{H}-7 \mathrm{a}), 3.05\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.00(\mathrm{td}, J=6.4,3.8$ $\mathrm{Hz}, \mathrm{H}-7 \mathrm{~b}), 2.92$ (dddd, $J=7.7,5.9,2.8,1.3 \mathrm{~Hz}, \mathrm{H}-11$ ), 2.74 (dddd, $J=5.0,3.9,2.8,1.1 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}$ ), 2.65 (ddd, $J=7.8,3.8,1.1 \mathrm{~Hz}, \mathrm{H}-8), 2.36(\mathrm{dd}, J=2.9,2.8 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{a}$ ), 2.14 (ddd, $J=16.7,5.9,3.9 \mathrm{~Hz}, \mathrm{H}-12$ ) and 2.10
(dt, $J=16.7,5.0 \mathrm{~Hz}, \mathrm{H}-12$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 211.37\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 173.74(\mathrm{C}-2), 146.91(\mathrm{C}-$ 12b), 135.11 (C-4), 132.76 (C-5), 128.15 (C-4'), 126.90 (C-6), 125.86 (C-3'), 125.42 (C-2'), 124.80 (C-5), 122.93 (C-5'), 115.75 (C-12c), 89.55 (C-10), 88.88 (C-9), 59.33 (C-6'), 57.18 (C-8), 57.09 (C-11), 52.17 (C-1'), 50.52 (C-7a), 45.44 (C-7b), 42.80 (C-12a), 31.17 (C-3a), 25.96 (C-12) and 23.62 (C-3); HRMS (EI) calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FeO}_{5}\left[\mathrm{M}^{+}\right] 468.0660$, Found 468.0600; MS (70 eV) $m / z 468\left(\left[\mathrm{M}^{+}\right], 3\right), 440(94), 384$ (83) and 356 (100); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Fe} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.43 ; \mathrm{H}, 4.44$. Found: C, 65.49; H, 4.42\%.

### 4.2.4. (1SR, $\left.7^{\prime} a S R\right)$-Tricarbonyl[(11,12,13,14- $)$ -

 tricyclo[8.5.0.0 ${ }^{3,9}$ ]pentadeca-3,5,7,11,13-pentaene-2-spiro- $8^{\prime}$-(7'a, $8^{\prime}$-dihydro- $2^{\prime} H$-cyclohepta[clfuran- $2^{\prime}$-one)]iron (6)Colorless crystals; m.p. $130.0-135.0^{\circ} \mathrm{C}$ (dec.); IR ( KBr ) $v_{\text {max }}$ 2044, 1972 and $1756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18\left(\mathrm{dd}, J=6.0,2.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.82$ (dd, $\left.J=11.1,6.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.74(\mathrm{dd}, J=11.1,6.0 \mathrm{~Hz}$, H-4'), 6.61 (dd, $J=11.0,5.9 \mathrm{~Hz}, \mathrm{H}-5$ ), 6.55 (dd, $J=$ $11.0,5.8 \mathrm{~Hz}, \mathrm{H}-6$ ), 6.20 (ddd, $J=10.0,6.1,2.2 \mathrm{~Hz}$, H-6'), 6.12 (ddd, $J=9.8,5.8,2.2 \mathrm{~Hz}, \mathrm{H}-7$ ), 5.98 (dd, $J=5.9,1.5 \mathrm{~Hz}, \mathrm{H}-4), 5.63$ (ddd, $J=7.9,4.7,2.0 \mathrm{~Hz}$, $\mathrm{H}-12$ ), 5.52 (dd, $J=7.6,4.7 \mathrm{~Hz}, \mathrm{H}-13$ ), 5.43 (dd, $J=$ $9.8,4.2 \mathrm{~Hz}, \mathrm{H}-8), 5.37$ (dd, $\left.J=10.0,3.6 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 3.17$ (ddd, $J=8.3,7.6,2.0 \mathrm{~Hz}, \mathrm{H}-14), 3.00(\mathrm{~m}, \mathrm{H}-10$ and $\mathrm{H}-11$ ), 2.82 (dt, $J=3.6,2.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{7}^{\prime} \mathrm{a}$ ), 2.29 (m, H-9), 2.05 (ddd, $J=14.2,8.3,5.7 \mathrm{~Hz}, \mathrm{H}-15$ ), 1.79 (dt, $J=$ $12.4,5.7 \mathrm{~Hz}, \mathrm{H}-1$ ), 1.31 (dd, $J=14.2,12.4 \mathrm{~Hz}, \mathrm{H}-15$ ); ${ }^{13} \mathrm{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 211.18\left(\mathrm{Fe}(\mathrm{CO})_{3}\right)$, 167.97 (C-2'), 139.05 (C-2'a), 136.34 (C-5'), 130.53 (C6), 130.09 (C-3'), 129.96 (C-5), 129.20 (C-4'), 125.93 (C-6'), 124.94 (C-7'), 124.49 (C-7), 123.18 (C-8), 122.38 (C-4), 121.04 (C-3), 92.17 (C-2), 91.83 (C-12), 88.77 (C-13), 60.75 (C-14), 60.13 (C-11), 59.12 (C-1), 49.25 (C-7'a), 42.29 (C-9), 40.83 (C-10) and 29.69 (C-15); HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Fe}\left[\mathrm{M}^{+}\right]$468.0660, Found: 468.0631; MS (70 eV) m/z 468 ([M $\left.{ }^{+}\right], 4$ ), 440 (28), 384 (100) and 340 (33); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FeO}_{5}$ : C, 66.68; H, 4.31. Found: C, 66.27; H, 4.68\%.

### 4.2.5. (1SR, 7'aRS)-Tricarbonyl[(11,12,13,14-ף)-

 tricyclo[8.5.0.0 ${ }^{3,9}$ ]pentadeca-3,5,7,11,13-pentaene-2-spiro- $8^{\prime}$-(7' $7^{\prime}, 8^{\prime}$-dihydro- $2^{\prime} H$-cyclohepta[clfuran- $2^{\prime}$-one)]iron (7)Colorless crystals; m.p. $176.0-178.0^{\circ} \mathrm{C}$ (dec.); IR (KBr) $v_{\text {max }}$ 2044, 1978, 1952 and $1758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.20\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.87$ (dd, $\left.J=11.0,6.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.79(\mathrm{dd}, J=11.0,5.8 \mathrm{~Hz}$, H-4'), 6.48 (m, H-5 and H-6), 6.35 (ddd, $J=9.8,6.1$, $2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$ ), 6.09 (ddd, $J=9.7,3.8,1.8 \mathrm{~Hz}, \mathrm{H}-7$ ), 5.97 (dd, $J=3.0,1.8 \mathrm{~Hz}, \mathrm{H}-4$ ), 5.65 (m, H-7' and H-12), 5.56 (dd, $J=7.7,4.7 \mathrm{~Hz}, \mathrm{H}-14$ ), 5.42 (dd, $J=9.7,4.4$ $\mathrm{Hz}, \mathrm{H}-8$ ), 3.25 (ddt, $J=8.8,7.7,1.8 \mathrm{~Hz}, \mathrm{H}-14$ ), 3.06 (m,
$\mathrm{H}-10$ and H-11), 2.82 (dt, $\left.J=4.2,2.0 \mathrm{~Hz}, \mathrm{H}-7^{\prime} \mathrm{a}\right), 2.53$ (dt, $J=12.3,5.5 \mathrm{~Hz}, \mathrm{H}-1$ ), 2.19 (m, H-9), 2.04 (ddd, $J=14.2,8.8,5.5 \mathrm{~Hz}, \mathrm{H}-15)$ and $1.38(\mathrm{dd}, J=14.2,12.3$ $\mathrm{Hz}, \mathrm{H}-15) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.36$ $\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 167.65\left(\mathrm{C}-2^{\prime}\right), 145.27\left(\mathrm{C}-2^{\prime} \mathrm{a}\right), 135.97\left(\mathrm{C}-5^{\prime}\right)$, 130.47 (C-6), 130.16 (C-5), 129.55 (C-4'), 129.13 (C-3'), 126.74 (C-6'), 124.34 (C-7), 123.08 (C-8), 120.64 (C-3), 120.41 (C-7'), 117.53 (C-4), 92.00 (C-12), 90.33 (C-2), 88.85 (C-13), 61.77 (C-14), 60.33 (C-11), 49.77 (C-1), 49.24 (C-7'a), 41.71 (C-9), 40.81 (C-10) and 23.16 (C15); HRMS (EI) calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Fe}\left[\mathrm{M}^{+}\right] 468.0660$, Found: 468.0626; MS (70 eV) $m / z 468\left(\left[\mathrm{M}^{+}\right], 2\right), 440$ (47), 384 (100) and 340 (42); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FeO}_{5}$ : C, 66.68; H, 4.31. Found: C, 66.29; H, $4.68 \%$.
4.3. Thermal rearrangement of $\mathbf{5}$ to tricarbonyl-[(8,9,10,11- $)$-3-(cyclohexa-1,4-dien-3-yl)-2H-(7a,7b,12,12a-tetrahydro-cyclohept[a]azuleno[c,d])-pyren-2-onejiron (9)

A solution of adduct 5 ( $102 \mathrm{mg}, 0.218 \mathrm{mmol}$ ) in benzene ( 30 ml ) was heated at $80^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 h . After the solvent was removed, the residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 9 ( $97.2 \mathrm{mg}, 95 \%$ ). Yellow crystals; m.p. $135.0-136.0^{\circ} \mathrm{C}$ (dec.); IR ( KBr ) $v_{\text {max }} 2045,1973$ and $1698 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ $\lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 344$ (4.10) and 400 sh (3.66); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.83(\mathrm{~d}, J=12.1 \mathrm{~Hz}, \mathrm{H}-4), 6.11$ (m, H-5), 5.94 (m, H-6), 5.93 (m, H-7), 5.82 (m, H-1'), $5.76\left(\mathrm{~m}, \mathrm{H}-5^{\prime}\right), 5.66\left(\mathrm{~m}, \mathrm{H}-4^{\prime}\right), 5.61\left(\mathrm{~m}, \mathrm{H}-2^{\prime}\right), 5.29$ (ddd, $J=7.7,5.0,1.2 \mathrm{~Hz}, \mathrm{H}-9), 5.20(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}$, $\mathrm{H}-10$ ), 4.69 (m, H-3'), 3.88 (dd, $J=5.9,2.9 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$ ), 3.03 (td, $J=5.9,2.9 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 2.96$ (m, H-11), 2.81 (ddd, $J=9.0,5.9,2.7 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}$ ), 2.75 (m, H-6' and H-6'), 2.69 (ddd, $J=7.7,2.9,1.2 \mathrm{~Hz}, \mathrm{H}-8$ ), 2.50 (dd, $J=17.4,9.0 \mathrm{~Hz}, \mathrm{H}-12$ ) and 2.22 (ddd, $J=17.4,6.0,2.7$ $\mathrm{Hz}, \mathrm{H}-12) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.96$ (C-2), 147.38 (C-12b), 134.65 (C-7), 133.33 (C-5), 127.99 (C-4'), 127.08 (C-2'), 125.88 (C-4), 125.50 (C-6), 123.83 ( $\mathrm{C}-1^{\prime}$ ), 123.27 ( $\mathrm{C}-5^{\prime}$ ), 120.99 (C-12c), 116.11 (C3a), 89.54 (C-10), 88.96 (C-9), 65.85 (C-3), 56.38 (C-11), 54.84 (C-8), 48.08 (C-7a), 44.77 (C-7b), 42.35 (C-12a), 34.61 (C-3'), 25.65 (C-6') and $24.56(\mathrm{C}-12)$; MS ( 70 eV ) $m / z 468$ ([M ${ }^{+}$], 0.49), 440 (29), 384 (100), 327 (31), 278 (47), 250 (25), 191 (12), 178 (19), and 78 (20); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FeO}_{5} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.92 ; \mathrm{H}, 4.80$. Found: C, 62.00 ; H, $4.35 \%$.

### 4.4. Rearrangement of compound $\mathbf{3}$ in $\mathrm{CHCl}_{3}$ to tricarbonyl[(1,2,3,4-ף)-tricyclo[8.5.0.0 $\left.{ }^{3,9}\right]$ pentadeca-3(9),4,6,11,13-pentaene-2-onejiron compound (11)

A solution of compound $3(21.0 \mathrm{mg}, 0.0600 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ was stirred at r.t. for 12 h under
nitrogen atmosphere. After the solvent was removed, rearrangement product (11) was obtained quantitatively. Pale yellow crystals; m.p. $133.0-134.8^{\circ} \mathrm{C}$; IR ( $\mathrm{KBr)} v_{\text {max }}$ 2041, 1975 and $1707 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.73$ (d, $\left.J=11.0 \mathrm{~Hz}, \mathrm{H}-4\right), 6.57$ (dd, $J=11.0,5.8 \mathrm{~Hz}, \mathrm{H}-5), 6.18$ (dd, $J=9.7,5.8 \mathrm{~Hz}, \mathrm{H}-6$ ), 5.46 (dt, $J=9.7,6.3 \mathrm{~Hz}, \mathrm{H}-7$ ), 5.06 (dd, $J=7.8,5.1 \mathrm{~Hz}$, $\mathrm{H}-13$ ), 4.88 (ddd, $J=7.4,5.1,0.5 \mathrm{~Hz}, \mathrm{H}-12$ ), 3.17 (ddd, $J=7.8,5.9,1.9 \mathrm{~Hz}, \mathrm{H}-14), 3.09(\mathrm{dd}, J=7.4,3.0 \mathrm{~Hz}$, H-11), 3.05 (dd, $J=6.8,3.0 \mathrm{~Hz}, \mathrm{H}-10$ ), 2.97 (dd, $J=$ $13.7,6.3 \mathrm{~Hz}, \mathrm{H}-8$ ), 2.86 (dd, $J=13.7,6.3 \mathrm{~Hz}, \mathrm{H}-8$ ), 2.80 (dd, $J=17.6,5.9 \mathrm{~Hz}, \mathrm{H}-15), 2.46$ (dd, $J=7.7,6.8 \mathrm{~Hz}$, $\mathrm{H}-1)$ and 2.19 (ddd, $J=17.6,7.7,1.9 \mathrm{~Hz}, \mathrm{H}-15)$; ${ }^{13} \mathrm{C}-$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 201.57\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 204.41$ (C-2), 169.93 (C-9), 132.51 (C-3), 131.23 (C-5), 128.67 (C-6), 122.62 (C-4), 121.18 (C-7), 92.34 (C-13), 85.02 (C-12), 59.07 (C-14), 58.73 (C-11), 47.24 (C-1), 43.25 (C-10), 30.20 (C-8) and 24.58 (C-15); MS (70 eV) m/z $350\left(\left[\mathrm{M}^{+}\right], 0.6 \%\right)$ and 266 (100); Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FeO}_{4}: \mathrm{C}, 61.74 ; \mathrm{H}, 4.03$. Found: C, 61.44; H, 4.27\%.

### 4.5. Acetylation of compound 3: synthesis of <br> tricarbonyl[(11,12,13,14-ף)-2-acetoxytricyclo $\left[8,5,0,0^{3,9}\right]$ -pentadeca-1,3,5,7,11,13-hexanejiron (12)

A solution of acetyl chloride ( $653 \mathrm{mg}, 8.32 \mathrm{mmol}$ ) in dry benzene ( 150 ml ) was added dropwise at reflux temperature to a solution of compound $\mathbf{3}(350 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and triethylamine ( $1.00 \mathrm{~g}, 9.88 \mathrm{mmol}$ ) in the same solvent ( 30 ml ) over a period of 12 h . After white crystals of triethylammonium chloride was removed by filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford 12 ( $271 \mathrm{mg}, 69 \%$ ). Colorless crystals; m.p. $160.5-161.5^{\circ} \mathrm{C}$; IR (KBr) $v_{\text {max }}$ 2040, 1972, 1956, 1925 and $1759 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 233$ (4.15) and 320 (3.39); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.51 (dd, $J=11.0,6.0 \mathrm{~Hz}, \mathrm{H}-5), 6.38$ (dd, $J=11.0,5.8$ $\mathrm{Hz}, \mathrm{H}-6), 6.13$ (ddd, $J=9.8,5.8,1.9 \mathrm{~Hz}, \mathrm{H}-7$ ), 5.74 (d, $J=6.0 \mathrm{~Hz}, \mathrm{H}-4), 5.55(\mathrm{dd}, J=9.8,4.6 \mathrm{~Hz}, \mathrm{H}-8), 5.49$ (dd, $J=7.3,5.0 \mathrm{~Hz}, \mathrm{H}-12$ ), 5.26 (dd, $J=7.6,5.0 \mathrm{~Hz}$, $\mathrm{H}-13$ ), 3.79 (d, $J=8.6 \mathrm{~Hz}, \mathrm{H}-10$ ), 3.11 (dd, $J=7.3,1.6$ $\mathrm{Hz}, \mathrm{H}-11$ ), 3.02 (t, $J=7.6 \mathrm{~Hz}, \mathrm{H}-14$ ), 2.86 (m, H-9 and $\mathrm{H}-15$ ), 2.59 (d, $J=18.1 \mathrm{~Hz}, \mathrm{H}-15$ ) and 2.20 (s, Me); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.8 \quad\left(\mathrm{Fe}(\mathrm{CO})_{3}\right)$, 167.61 (OCO), 142.76 (C-2), 136.00 (C-3), 134.9 (C-1), 130.50 (C-5), 128.88 (C-6), 125.46 (C-7), 118.77 (C-8), 110.54 (C-4), 89.78 (C-13), 88.65 (C-12), 60.67 (C-11), 57.03 (C-14), 44.96 (C-10), 43.52 (C-9), 27.91 (C-5) and 20.42 (Me); MS (70 eV) $m / z 392$ ( $\mathrm{M}^{+}$], $2 \%$ ), 336 (37), 308 (100) and 191 (29); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FeO}_{5}$ : C, 61.25 ; H, 4.11. Found: C, 61.09 ; H, $4.17 \%$.
4.6. Reduction of $\mathbf{3}$ with $\mathrm{NaBH}_{4}$ to tricarbonyl[(11,12,13,14- $\eta$ )-tricyclo[8.5.0.0 $\left.0^{3,9}\right]$ -pentadeca-3,5,7,11,13-pentaene-2-oljiron (13)

Sodium borohydride ( $17.0 \mathrm{mg}, 0.449 \mathrm{mmol}$ ) was added to a solution of $3(100 \mathrm{mg}, 0.286 \mathrm{mmol})$ in methanol ( 30 ml ) at r.t. under nitrogen atmosphere. After stirring for 24 h , the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford 13 ( $96.0 \mathrm{mg}, 95 \%$ ). Pale yellow needles; m.p. $127.0-128.0{ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\text {max }} 3303(\mathrm{~m}), 2040(\mathrm{~s}), 1980$ $\mathrm{cm}^{-1} ; \mathrm{UV}$-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 215$ sh (4.57) and 287 sh (3.75); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.64$ (dd, $J=10.9,5.9 \mathrm{~Hz}, \mathrm{H}-5$ ), 6.51 (dd, $J=10.9$, 5.8 , H-6), 6.21 (d, $J=5.9 \mathrm{~Hz}, \mathrm{H}-4$ ), 6.07 (ddd, $J=9.6,5.8$, $1.8 \mathrm{~Hz}, \mathrm{H}-7$ ), 5.59 (ddd, $J=7.3,4.7,1.6 \mathrm{~Hz}, \mathrm{H}-12$ ), 5.50 (dd, $J=7.7,4.7 \mathrm{~Hz}, \mathrm{H}-13$ ), 5.33 (dd, $J=9.6,4.5$ $\mathrm{Hz}, \mathrm{H}-8), 4.88$ (m, H-2), $3.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-14), 3.07$ (t, $J=7.3 \mathrm{~Hz}, \mathrm{H}-11$ ), 2.95 (dd, $J=14.7,7.3 \mathrm{~Hz}, \mathrm{H}-10$ ), 2.13 (ddd, $J=14.7,13.1,6.6 \mathrm{~Hz}, \mathrm{H}-1), 1.99$ (m, H-9), 1.85 (ddd, $J=13.1,7.7,6.6 \mathrm{~Hz}, \mathrm{H}-15$ ), 1.36 (d, $J=8.0$ $\mathrm{Hz}, \mathrm{OH})$ and $1.05(\mathrm{t}, J=13.1 \mathrm{~Hz}, \mathrm{H}-15) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.40\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 145.27(\mathrm{C}-3)$, 131.08 (C-5), 129.32 (C-6), 123.89 (C-7), 122.33 (C-8), 118.32 (C-4), 91.87 (C-12), 88.56 (C-13), 75.85 (C-2), 61.43 (C-11), 60.97 (C-14), 49.74 (C-1), 42.88 (C-9), 41.08 (C-10) and $20.74(\mathrm{C}-15)$; MS ( 70 eV ) $\mathrm{m} / \mathrm{z} 352$ ( $\left[\mathrm{M}^{+} \mathrm{]}, 0.6 \%\right.$ ), 268 (31), 204 (30), 194 (24), 176 (51), 165 (45), 148 (84), 141 (25), 120 (58), 112 (71), 91 (100), 84 (23), 70 (20) and 56 (31); Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FeO}_{4}$ : C, 61.39; H, 4.58. Found: C, 61.23; H, 4.63\%.

### 4.7. Tricyclo[8.5.0.0 ${ }^{3,9}$ ]pentadeca-3,5,7,11,13-pentaen-2-one (14)

A solution of ceric ammonium nitrate ( $1.21 \mathrm{~g}, 2.21$ $\mathrm{mmol})$ in acetonitrile ( 20 ml ) was added to a solution of [ $8+2$ ] adduct $3(274 \mathrm{mg}, 0.783 \mathrm{mmol})$ in the same solvent $(50 \mathrm{ml})$ at r.t. After stirring for 1 h , the reaction mixture was poured into water and extracted with ethyl acetate, dried over $\mathrm{MgSO}_{4}$. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford $\mathbf{1 4}$ ( $126 \mathrm{mg}, 77 \%$ ). Pale yellow crystals: m.p. $86.0-86.5^{\circ} \mathrm{C}$; IR ( KBr ) $v_{\text {max }} 1701 \mathrm{~cm}^{-1}$; $\mathrm{UV}-$ vis $(\mathrm{MeOH}) \lambda_{\max }, \mathrm{nm}(\log \varepsilon) 231$ (4.27) and 321 (3.65); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.09$ (d, $J=5.6$ $\mathrm{Hz}, \mathrm{H}-4), 6.89$ (dd, $J=11.0,6.1 \mathrm{~Hz}, \mathrm{H}-6$ ), 6.83 (dd, $J=11.0,5.6 \mathrm{~Hz}, \mathrm{H}-5), 6.29$ (ddd, $J=9.5,6.1,2.0 \mathrm{~Hz}$, H-7), 6.17 (ddd, $J=11.7,5.9,1.9 \mathrm{~Hz}, \mathrm{H}-12$ ), 6.05 (dd, $J=11.7,4.0 \mathrm{~Hz}, \mathrm{H}-11), 6.02$ (ddd, $J=11.0,8.4,3.9 \mathrm{~Hz}$, H-14), 5.98 (ddd, $J=11.0,5.9,2.2 \mathrm{~Hz}, \mathrm{H}-13$ ), 5.75 (dd, $J=9.5,5.0 \mathrm{~Hz}, \mathrm{H}-8$ ), 3.48 (m, H-10), 2.67 (ddd, $J=$ $11.7,8.1,1.9 \mathrm{~Hz}, \mathrm{H}-1), 2.61$ (ddd, $J=7.5,5.0,2.0 \mathrm{~Hz}$, H-9), 2.48 (ddd, $J=14.6,8.4,2.2 \mathrm{~Hz}, \mathrm{H}-15$ ) and 2.16
(dddd, $J=14.6,11.7,3.9,1.9 \mathrm{~Hz}, \mathrm{H}-15) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 206.47$ (C-2), 136.35 (C-6), 133.20 (C-11), 132.39 (C-14), 129.97 (C-5), 127.11 (C-12), 127.06 (C-8), 126.89 (C-13), 126.82 (C-3), 125.99 (C-7), 125.77 (C-4), 53.41 (C-1), 43.45 (C-9), 42.42 (C-10) and 33.21 (C-15); MS (70 eV) m/z 210 ( $\left[\mathrm{M}^{+}\right], 39 \%$ ), 118 (49) and 90 (100); Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 85.68$; H , 6.71. Found: C, 85.55 ; H, $6.54 \%$.

### 4.8. Synthesis of tricarbonyl[(2,3,4,5-ף)-11-acetoxy1 H -cyclohept[a]azulene]iron (15)

A solution of $o$-chloranil ( $35.0 \mathrm{mg}, 0.142 \mathrm{mmol}$ ) in benzene ( 15 ml ) was added to a solution of compound $12(51.0 \mathrm{mg}, 0.130 \mathrm{mmol})$ in the same solvent $(15 \mathrm{ml})$ at r.t. After stirring for 1 min , reaction mixture was passed through cellulose powder. After the solvent was removed under reduced pressure, the residue was purified by chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford $\mathbf{1 5}(40.0 \mathrm{mg}, 79 \%)$. Green crystals; m.p. $171.0-173.0^{\circ} \mathrm{C}$; IR ( KBr ) $v_{\text {max }}$ 2033, 1985, 1971, 1954 and $1757 \mathrm{~cm}^{-1}$; UV-vis (MeOH) $\lambda_{\text {max }}$, nm $(\log \varepsilon) 233$ (4.41), 301 (4.54), 406 (4.06), 529 (2.83) and 710 (3.39); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, \mathrm{H}-6), 7.78(\mathrm{~d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-10), 7.40(\mathrm{dd}$, $J=10.0,9.7 \mathrm{~Hz}, \mathrm{H}-8$ ), 6.97 (dd, $J=10.0,9.6 \mathrm{~Hz}, \mathrm{H}-7$ ), 6.90 (dd, $J=9.7,9.6 \mathrm{~Hz}, \mathrm{H}-9), 5.53$ (ddt, $J=8.0,4.9$, $1.1 \mathrm{~Hz}, \mathrm{H}-3$ ), 5.49 (ddd, $J=7.8,4.9,1.4 \mathrm{~Hz}, \mathrm{H}-4), 4.47$ (dd, $J=7.8,1.1 \mathrm{~Hz}, \mathrm{H}-5$ ), 3.53 (dddd, $J=8.0,4.8,2.7$, $1.4 \mathrm{~Hz}, \mathrm{H}-2), 3.28$ (dd, $J=21.7,4.8 \mathrm{~Hz}, \mathrm{H}-1$ ), 3.10 (dd, $J=21.7,2.7 \mathrm{~Hz}, \mathrm{H}-1$ ) and 2.39 (s, Me); ${ }^{13} \mathrm{C}-\mathrm{NMR}(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.72\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 169.02(\mathrm{OCO})$, 137.81 (C-8), 136.31 (C-11a), 135.22 (C-11), 132.17 (C-6), 130.99 (C-5b), 130.14 (C-10), 127.32 (C-5a or C-10a), 122.83 (C-10a or C-5a), 121.98 (C-9), 121.60 (C-7), 90.59 (C-4), 88.11 (C-3), 58.65 (C-2), 55.97 (C-5), $27.15(\mathrm{C}-1)$ and $20.56\left(\mathrm{CH}_{3}\right)$; MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 390$ ( $\left[\mathrm{M}^{+}\right], 0.6$ ), 250 (34), 208 (100), 191 (35), 178 (37) and 165 (25); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{FeO}_{5} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.18$; H, 3.79. Found: C, 60.15 ; H, $3.59 \%$.

### 4.9. 11-Acetoxy-1H-cyclohept[a]azulene (16)

DDQ ( $125 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) was added to a solution of compound 3 ( $97.7 \mathrm{mg}, 0.248 \mathrm{mmol}$ ) in benzene ( 30 $\mathrm{ml})$ at reflux temperature. After stirring at the same temperature for 12 h , the reaction mixture was chromatographed by a short column on silica gel with benzene and separated by GPC with $\mathrm{CHCl}_{3}$ to afford $15(9.60 \mathrm{mg}, 10 \%)$ and compound $16(11.1 \mathrm{mg}, 18 \%)$ along with recovered 3 ( $56.8 \mathrm{mg}, 58 \%$ ). 16: Green needles; m.p. $109.0-109.5^{\circ} \mathrm{C}$; IR ( KBr ) $v_{\text {max }} 1752$ and $1717 \mathrm{~cm}^{-1} ;$ UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 318$ (4.48), 401 (3.94), 631 (2.47) and 688 sh (2.37); ${ }^{1} \mathrm{H}-$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.35$ (d, $J=9.8 \mathrm{~Hz}, \mathrm{H}-6$ ), $8.00(\mathrm{~d}, J=9.8 \mathrm{~Hz}, \mathrm{H}-10), 7.53(\mathrm{dd}, J=10.5,10.1 \mathrm{~Hz}$,

H-8), 7.48 (d, $J=11.3 \mathrm{~Hz}, \mathrm{H}-5$ ), $7.14(\mathrm{dd}, J=10.5,9.8$ $\mathrm{Hz}, \mathrm{H}-7$ ), 7.05 (dd, $J=10.1,9.8 \mathrm{~Hz}, \mathrm{H}-9$ ), 6.33 (dd, $J=11.3,6.0 \mathrm{~Hz}, \mathrm{H}-4), 6.13$ (dd, $J=10.5,6.0 \mathrm{~Hz}, \mathrm{H}-3$ ), 5.59 (dt, $J=10.5,6.1 \mathrm{~Hz}, \mathrm{H}-2), 3.37$ (d, $J=6.1 \mathrm{~Hz}, \mathrm{H}-1$ and $\mathrm{H}-1$ ) and 2.48 (s, Me); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.69(\mathrm{OCO}), 139.32(\mathrm{C}-10 \mathrm{a}), 137.65(\mathrm{C}-6)$, 134.10 (C-1), 129.42 (C-11a), 128.48 (C-8), 124.68 (C7), 124.26 (C-3), 123.50 (C-9), 123.38 (C-4), 123.01 (C-6a), 122.64 (C-2), 26.46 (C-10), and 20.67 $\left(\mathrm{OCOCH}_{3}\right) ; \mathrm{MS}(70 \mathrm{eV}) m / z 250\left(\left[\mathrm{M}^{+}\right], 11\right), 208(100)$ and 178 (26); Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ : C, 78.74; H, 5.83. Found: C, 78.46; H, 5.73\%.

### 4.10. 10-Acetoxy-4-formylbenzo[a]azulene (17)

A solution of trimethylamine $N$-oxide ( $191 \mathrm{mg}, 2.54$ $\mathrm{mmol})$ and compound $15(48.0 \mathrm{mg}, 0.123 \mathrm{mmol})$ in benzene ( 30 ml ) was stirred at reflux temperature under nitrogen atmosphere for 20 min . After reaction mixture was passed through the cellulose powder, the solvent was removed. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{1 7}$ ( $13.0 \mathrm{mg}, 48 \%$ ). Dark green crystals; m.p. $131.0-$ $132.5{ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\text {max }} 1743 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 253$ (4.26), 319 (3.68), 370 (3.68), 390 (3.54), 411 (4.53), 566 (3.69) and 615 (3.72); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.46(\mathrm{~s}, \mathrm{CHO}), 9.82(\mathrm{dd}, J=8.8$, $1.0 \mathrm{~Hz}, \mathrm{H}-5), 8.04$ (dd, $J=7.3,1.0 \mathrm{~Hz}, \mathrm{H}-3$ ), 7.95 (dd, $J=7.9,1.0 \mathrm{~Hz}, \mathrm{H}-1), 7.86(\mathrm{dd}, J=7.9,7.3 \mathrm{~Hz}, \mathrm{H}-2)$, 7.76 (dd, $J=10.9,1.0 \mathrm{~Hz}, \mathrm{H}-9$ ), 7.28 (ddt, $J=11.1,8.3$, $1.0 \mathrm{~Hz}, \mathrm{H}-7$ ), 7.13 (ddd, $J=11.1,8.8,0.7 \mathrm{~Hz}, \mathrm{H}-6$ ), 6.90 (ddd, $J=10.9,8.3,0.7 \mathrm{~Hz}, \mathrm{H}-8$ ) and 2.54 (s, Me); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.65(\mathrm{CHO}), 169.15$ (OCO), 137.83 (C-5), 137.09 (C-7), 135.93 (C-4), 135.67 (C-10), 134.68, 133.43, 133.10 (C-3), 130.07 (C-9), 127.37 (C-2), 126.75 (C-6), $126.59,125.28,124.70$ (C-8), $123.25(\mathrm{C}-1)$ and $20.70\left(\mathrm{OCOCH}_{3}\right) ; \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ $264\left(\left[\mathrm{M}^{+}\right], 17 \%\right), 222$ (100) and 165 (31); Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.71$; H, 4.79; Found: C, 74.54; H, 4.82\%.

### 4.11. Tricarbonyl[(2,3,4,5- $\boldsymbol{)}$ - 1 - 1 -cyclohept[a]azulene-11-yl]iron cyclohexa-1,3,5-triene-7-carboxylate] (18)

A solution of $o$-chloranil ( $120 \mathrm{mg}, 0.529 \mathrm{mmol}$ ) in benzene ( 15 ml ) was added to a solution of $\mathbf{3}(192 \mathrm{mg}$, 0.409 mmol ) in the same solvent ( 30 ml ) at r.t. After stirring for 1 min , reaction mixture was passed through the cellulose powder. After the solvent was removed, the residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford $\mathbf{1 8}$ (141 $\mathrm{mg}, 57 \%$ ). Green crystals; m.p. $160{ }^{\circ} \mathrm{C}$ (dec.); IR ( KBr ) $v_{\max }$ 2043, 1972, 1946 and $1746 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon) 306$ (4.73), 408 (4.09), 529 (2.24) and 651 (2.47); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.19 (d, $J=9.7 \mathrm{~Hz}, \mathrm{H}-6), 7.79$ (d, $J=9.6 \mathrm{~Hz}, \mathrm{H}-10$ ),
7.41 (dd, $J=10.0,9.9 \mathrm{~Hz}, \mathrm{H}-8), 6.99$ (dd, $J=9.9,9.7$ $\mathrm{Hz}, \mathrm{H}-7), 6.91$ (dd, $J=10.0,9.6 \mathrm{~Hz}, \mathrm{H}-9), 6.74$ (m, H-3' and H-4'), 6.39 (m, H-2' and H-5'), 5.62 (m, H-1' and H-6'), 5.54 (ddd, $J=7.9,4.9,1.0 \mathrm{~Hz}, \mathrm{H}-3), 5.50$ (ddd, $J=7.7,4.9,1.3 \mathrm{~Hz}, \mathrm{H}-4), 4.48(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}$, H-5), 3.54 (dddd, $J=7.9,4.9,2.7,1.3 \mathrm{~Hz}, \mathrm{H}-2), 3.31$ (dd, $J=21.7,4.8 \mathrm{~Hz}, \mathrm{H}-1), 3.13(\mathrm{dd}, J=21.7,2.7 \mathrm{~Hz}$, $\mathrm{H}-1)$ and $2.98\left(\mathrm{tt}, J=4.7,1.1 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right), \delta 210.70\left(\mathrm{Fe}(\mathrm{CO})_{3}\right), 171.18(\mathrm{OCO}), 137.87$ (C-8), 136.23, 134.95, 132.23 (C-6), 131.08, 131.06 (C-4' or $\left.\mathrm{C}-3^{\prime}\right), 131.04\left(\mathrm{C}-3^{\prime}\right.$ or $\left.\mathrm{C}-4^{\prime}\right), 130.13(\mathrm{C}-10), 127.33$, 126.16 (C-5' or $\left.\mathrm{C}-2^{\prime}\right), 126.15$ (C-2' or $\left.\mathrm{C}-5^{\prime}\right), 122.86$, 122.07 (C-9), 121.68 (C-7), 116.01 ( $\mathrm{C}-1^{\prime}$ and $\left.\mathrm{C}-6^{\prime}\right), 90.64$ (C-4), 88.12 (C-3), 58.61 (C-2), 55.89 (C-5), 43.67 (C-7') and $27.22(\mathrm{C}-1)$; MS (70 eV) $m / z 466\left(\left[\mathrm{M}^{+}\right], 0.24\right), 326$ (22), 207 (50), 178 (23) and 91 (100); Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{FeO}_{5} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.71 ; \mathrm{H}, 3.82$. Found: C, 65.98 ; H, $3.99 \%$.

### 4.12. Dicarbonyl[(11,12,13,14- $)$-tricyclo[8.5.0.0 $\left.0^{3,9}\right]$ -pentadeca-3,5,7,11,13-pentaen-2-one](triphenylphosphine)iron (20a)

A solution of tropyl carboxylic acid chloride (295 $\mathrm{mg}, 1.91 \mathrm{mmol}$ ) in dry benzene ( 50 ml ) was added dropwise at r.t. to a solution of dicarbonyl[(1,2,3,4-ף)-1,3,5-cycloheptatriene](triphenylphosphine)iron (19a) $(393 \mathrm{mg}, 0.843 \mathrm{mmol})$ and triethylamine $(232 \mathrm{mg}, 2.29$ $\mathrm{mmol})$ in the same solvent ( 50 ml ) over a period of 6 h under nitrogen atmosphere. After stirring for another 30 min , triethylammonium chloride was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford 20a (183 $\mathrm{mg}, 37 \%$ ) along with recovered 19a ( $121 \mathrm{mg}, 31 \%$ ). 20a: Yellow crystals; m.p. $117-118{ }^{\circ} \mathrm{C}$ (dec.); IR (KBr) $v_{\text {max }}$ 1965, 1905 and $1709 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}$, nm $(\log \varepsilon) 227 \operatorname{sh}(4.64)$ and $314 \operatorname{sh}(3.81) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(6 \mathrm{H}), 7.39(9 \mathrm{H}), 6.72(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, \mathrm{H}-4), 6.15$ (dd, $J=11.1,6.7 \mathrm{~Hz}, \mathrm{H}-6$ ), 6.06 (dd, $J=11.1,6.6 \mathrm{~Hz}, \mathrm{H}-5), 5.74(\mathrm{dd}, J=9.6,6.7 \mathrm{~Hz}, \mathrm{H}-7)$ 4.93 (d, $J=9.6 \mathrm{~Hz}, \mathrm{H}-8), 4.78$ (broad s, H-12 and H-13), 3.72 (d, $J=2.8 \mathrm{~Hz}, \mathrm{H}-9$ ), 2.97 (broad s, H-10), 2.47 (braod s, H-14), 2.33 (broad s, H-15), 2.16 (m, $\mathrm{H}-15), 2.11$ (m, H-1), 2.02 (broad s, H-11); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(150 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta \quad 215.05 \quad\left(\mathrm{Fe}(\mathrm{CO})_{2}\right), \quad 205.20$ $\left(\mathrm{Fe}(\mathrm{CO})_{2}\right), 135.24(\mathrm{Ph}), 135.14(\mathrm{C}-6), 134.92(\mathrm{Ph})$, 134.88 ( Ph ), $133.23(\mathrm{Ph}), 133.16(\mathrm{Ph}), 130.50(\mathrm{C}-8)$, $129.74(\mathrm{Ph}), 129.73(\mathrm{Ph}), 128.76(\mathrm{C}-4), 128.32(\mathrm{Ph})$, $128.26(\mathrm{Ph}), 127.90(\mathrm{C}-5), 126.30(\mathrm{C}-7), 90.34(\mathrm{C}-13$ or $\mathrm{C}-12), 87.70$ (C-12 or $\mathrm{C}-13$ ), 53.38 (C-14), 50.59 (C-1 and $\mathrm{C}-11$ ), 46.56 (C-9), 41.32 (C-10) and 25.63 (C-15); MS (70 eV) m/z 528 ([ $\left.\mathrm{M}^{+}\right], 3$ ), 277 (5), 262 (100), 210 (23) and 183 (47); Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{FeO}_{3} \mathrm{P}: \mathrm{C}$, 71.93 ; H, 5.00. Found: C, 72.47 ; H, $5.15 \%$.

### 4.13. Dicarbonyl[(11,12,13,14- $\eta)$-tricyclo[8.5.0.0.0,9 $]$ -pentadeca-3,5,7,11,13-pentaen-2-one](triphenyl phosphite)iron (20b)

A solution of tropyl carboxylic acid chloride (272 $\mathrm{mg}, 1.76 \mathrm{mmol})$ in dry benzene $(50 \mathrm{ml})$ was added dropwise at r.t. to a solution of cycloheptatriene$\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}(\mathrm{OPh})_{3}(19 b)(430 \mathrm{mg}, 0.837 \mathrm{mmol})$ and triethylamine ( $220 \mathrm{mg}, 2.17 \mathrm{mmol}$ ) in the same solvent ( 50 ml ) over a period of 6 h under nitrogen atmosphere. After stirring for another 30 min , triethylammonium chloride was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford 20b ( $179 \mathrm{mg}, 34 \%$ ) along with recovered 19b ( $235 \mathrm{mg}, 55 \%$ ). 20b: Yellow crystals; m.p. $135.5-136.0{ }^{\circ} \mathrm{C}$; UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\text {max }}$, nm $(\log \varepsilon) 233$ sh (4.53), 268 sh (3.93) and 328 sh (3.65); IR (KBr) $v_{\max }$ 1991, 1935 and $1707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34(6 \mathrm{H}), 7.20(9 \mathrm{H}), 6.72(\mathrm{dd}, J=6.6,2.2$ Hz, H-4), 6.18 (dd, $J=11.2,6.8 \mathrm{~Hz}, \mathrm{H}-6), 6.07$ (dd, $J=11.2,6.6 \mathrm{~Hz}, \mathrm{H}-5), 5.88$ (ddd, $J=11.0,6.8,2.3 \mathrm{~Hz}$, $\mathrm{H}-7), 5.26(\mathrm{~d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-8), 4.65(\mathrm{~m}, \mathrm{H}-12$ and H-13), 3.79 (dddd, $J=5.9,2.8,2.3,2.2 \mathrm{~Hz}, \mathrm{H}-9$ ), 2.84 (m, H-10), 2.76 (ddd, $J=7.0,6.1,5.1 \mathrm{~Hz}, \mathrm{H}-14), 2.56$ (m, H-11), 2.32 (dd, $J=13.6,6.1 \mathrm{~Hz}, \mathrm{H}-15$ ) and 1.97 (m, H-1 and $\mathrm{H}-15$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.68 (C-2), 151.38 (OPh), 135.27 (C-6), 134.73 (C-3), 130.21 (C-8), 129.75 (OPh), 129.22 (C-4), 127.96 (C-5), 126.88 (C-7), $124.93(\mathrm{OPh}), 121.20(\mathrm{OPh}), 89.50(\mathrm{C}-12$ or C-13), 86.47 (C-12 or C-13), 57.27 (C-11), 54.91 (C-14), 50.13 (C-1), 46.58 (C-9), 41.08 (C-10) and 24.90 (C-15); MS (70 eV) m/z 632 ([ $\left.\mathrm{M}^{+}\right], 0.2$ ), 311 (35) and 211 (100); Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{FeO}_{6} \mathrm{P} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 65.54; H, 4.71. Found: C, 65.37; H, 4.62\%.

## References

[1] T. Asao, N. Morita, Y. Kitahara, J. Am. Chem. Soc. 94 (1972) 3655.
[2] (a) N. Morita, T. Asao, Y. Kitahara, Tetrahedron Lett. (1975) 2821;
(b) Y. Kitahara, Pure Appl. Chem. 44 (1975) 833.
[3] C. Falshaw, A. Lakoues, G. Taylor, J. Chem. Res. (S) 106 (1985).
[4] (a) Z. Goldschmidt, S. Antebi, Tetrahedron Lett. (1978) 271; (b) Z. Goldschmidt, S. Antebi, D. Cohen, J. Organomet. Chem. 273 (1984) 347.
[5] (a) Z. Goldschmidt, H.E. Gottieb, E. Genizi, D. Cohen, J. Organomet. Chem. 301 (1986) 337;
(b) Z. Goldschmidt, S. Antebi, H.E. Gottieb, D. Cohen, J. Organomet. Chem. 282 (1985) 369;
(c) S.K. Chopra, M.J. Hynes, P. McArdle, J. Chem. Soc. Dalton (1981) 586;
(d) J. Weaver, P. Woodward, J. Chem. Soc. (A) (1971) 3521.
[6] (a) E.A.K. von Gustorf, F.-W. Grevels, I. Fischler (Eds.), The Organic Chemistry of Iron, vols. 1 and 2, Academic Press, New York, 1978 and 1981;
(b) A.J. Deeming, in: G. Wilkinson (Ed.), Comprehensive Organometallic Chemistry, vol. 4, Pergamon Press, Oxford, 1982, pp. 377-512;
(c) R.C. Kerber, in: G. Wilkinson (Ed.), Comprehensive Organometallic Chemistry II, vol. 7, Pergamon Press, Oxford, 1995, pp. 101-229 References cited therein.
[7] (a) N. Morita, Y. Kitahara, T. Asao, Tetrahedron Lett. (1982) 1575;
(b) N. Morita, S. Ito, T. Asao, H. Sotokawa, M. Hatano, A. Tajiri, Chem. Lett. (1990) 1639;
(c) N. Morita, M. Kurita, S. Ito, T. Asao, C. Kabuto, M. Ueno, T. Sato, H. Sotokawa, M. Watanabe, A. Tajiri, Enantiomer 3 (1998) 453.
[8] (a) N. Morita, Y. Kitahara, T. Asao, Tetrahedron Lett. (1972) 869;
(b) T. Asao, N. Morita, Y. Kitahara, Synth. Commun. 2 (1972) 353;
(c) T. Asao, N. Morita, C. Kabuto, Y. Kitahara, Tetrahedron Lett. (1972) 4379;
(d) N. Morita, T. Asao, N. Iwagame, Y. Kitahara, Chemistry Lett. (1973) 67;
(e) N. Morita, T. Asao, Y. Kitahara, Tetrahedron Lett. (1974) 2083.
[9] (a) G. Maier, Angew. Chem. Int. Ed. Engl. 6 (1967) 402;
(b) T. Toda, J. Synth. Org. Chem. Jpn. 20 (1972) 412;
(c) W.J. le Noble, Highlights of Organic Chemistry, Marcel Dekker, New York, 1974, pp. 402-406;
(d) W. Grimme, H.G. Köser, J. Am. Chem. Soc. 103 (1981) 5919.
[10] (a) J.E. Mahler, R. Pettit, J. Am. Chem. Soc. 85 (1963) 3955; (b) M.A. Hashmi, J.D. Munro, P.C. Pauson, J.M. Williamson, J. Chem. Soc. A (1967) 240;
(c) R. Hoffman, P. Hofmann, J. Am. Chem. Soc. 98 (1976) 598; (d) A.J. Peason, Transition Met. Chem. 6 (1981) 67.
[11] R. Burton, L. Pratt, G. Wilkinson, J. Chem. Soc. (1960) 4290.
[12] M. Yasunami, T. Amemiya, K. Takase, Tetrahedron Lett. 24 (1983) 69.
[13] F.M. Chaudhari, P.L. Pauson, J. Organomet. Chem. 5 (1966) 73.
[14] A.J. Pearson, K. Chang, J. Chem. Soc. Chem. Commun. (1991) 394.


[^0]:    * Corresponding author. Tel./fax: + 81-22-2177714.

    E-mail address: morita@funorg.chem.tohoku.ac.jp (N. Morita).

